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A new view of the electronic structure
of the spin-Peierls compound α′-NaV2O5
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Abstract. The present understanding of the electronic and magnetic properties of α′-NaV2O5 is based
on the hypothesis of strong charge disproportionation into V4+ and V5+, which is assumed to lead to a
spin-1/2 Heisenberg chain system. A recent structure analysis shows, however, that the V-ions are in a
mixed valence state and indistiguishable. We propose an explanation for the insulating state, which is not
based on charge modulation, and show that strong correlations together with the Heitler-London character
of the relevant intermediate states naturally lead to antiferromagnetic Heisenberg chains. The interchain
coupling is weak and frustrated, and its effect on the uniform susceptibility is found to be small.

PACS. 75.50.Ee Antiferromagnetics – 75.30.Et Exchange and superexchange interactions –
75.40.Cx Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.)

One-dimensional spin-1/2 Heisenberg antiferromagnets
are expected to undergo a structural phase transition into
a dimerized phase at low temperature accompanied by the
opening of a spin gap [1]. This spin-Peierls transition was
first observed in organic systems [2], but has found con-
siderable experimental attention after its recent discovery
in CuGeO3 (Tsp = 14 K) [3]. The α′-phase of NaV2O5

appears to be the second inorganic compound where a
similar transition was observed with an even higher tran-
sition temperature Tsp = 34 K [4]. The size of the spin
gap determined by neutron scattering [5], susceptibility
measurements [6] and several other techniques falls in the
range 85−100 K. The transition into the low-temperature
dimerized structure was confirmed by X-ray scattering [5],
NMR [7], Raman scattering [6] and thermal-expansion [8]
yet the detailed deformation pattern is still unknown. Re-
cently phonons with anomalous broad line shape indicat-
ing a strong spin-phonon coupling even far above Tsp were
found in Raman experiments [9]. These experiments also
show new low energy excitations in the spin-Peierls phase,
which either appear because of the lower symmetry or may
reflect characteristic spin excitations of the dimerized spin
chains, e.g. a soliton bound state at 64 cm−1 [9].

Based on an early structure determination for α′-
NaV2O5 [10], the current picture for the origin of the one-
dimensional magnetic properties rests on the assumption
of charge discommensuration into V4+ and V5+ chains
[4,5,7,9,11,12]. In Figure 1 the V 1 and V 2 chains in
b-direction would correspond to these different charged
vanadium chains. In this picture the V4+ chain would
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Fig. 1. Orbital structure of α′-NaV2O5 in the a−b plane. The
lowest d-orbitals with dxy-symmetry are occupied by one elec-
tron per two V-atoms. The O p-orbitals at the corners of square
pyramids (where only the basal plane is indicated) are occu-
pied, with energies ranging from −3 eV down to −7 eV relative
to the chemical potential. Solid (dashed) squares indicate the
downward (upward) orientation of the pyramids (for structural
details see Refs. [4,13]). The dxy orbitals have a direct overlap
txy along the V 2-V 1′-V 2-V 1′ zig-zag chain. The largest hop-
ping matrix element ta is, however, via double exchange in-
teraction involving an O3 py orbital. The resulting bonding is
manifested in the structure by the shortest planar V–O dis-
tance along the V 1−O3−V 2 bond.

correspond to a spin-1/2 Heisenberg chain. A problem
with this picture is, however, the missing physical argu-
ment for such a strong charge modulation.
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In fact a recent new structural analysis of α′-NaV2O5

by von Schnering et al. [13] clearly shows that all vana-
diums are equivalent and in a mixed valent state. Fur-
thermore the charge-ordered state at room temperature
was found to be in conflict with Raman scattering experi-
ments [14]. Since there is one d-electron per two V ions an
explanation for the insulating properties must be found
which does not rest on charge discommensuration.

The aim of this work is to show how in such an in-
termediate valence situation correlation effects can lead
to a quasi-1D Heisenberg antiferromagnet. An important
structural information [13], which is crucial for our anal-
ysis, are the V−O distances d in the a−b plane (Fig. 1):
d(V 1−O3) = d(V 2−O3) = 1.825 Å, d(V 1−O2 ‖ b) =
1.916 Å and d(V 1−O2 ‖ a) = 1.986 Å. This implies
that the V 1−O3−V 2 bond is much shorter than the
V 1−O2−V 1 bond in b-direction. This additional bond-
ing effect can be attributed to the dxy-electrons. From
Figure 1 we see that the dxy-orbitals have a direct over-
lap in one direction, e.g. V 2-V 1′, which is however quite
small txy ∼= 0.3 eV [15,16]. Yet a dxy-electron can also
hop between V 1 and V 2 via a double exchange like pro-
cess. In such a process first an electron hops from the
occupied O3 py-orbital to V 2 with an excitation energy
∆εy = ε(dxy) − ε(py), and in a second step the V 1-
electron annihilates the oxygen hole. The matrixelement
for this process is ta ∼= t2pd/∆εy. The matrixelement tpd
depends on the vanadium-oxygen distance d and can be
estimated with the help of Harrison’s [16] solid state

table as tpd = ηpdπ~2r
3/2
d /md7/2, where ηpdπ = 1.36,

~2/m = 7.62 eVÅ2, and rd = 0.98 Å for vanadium.
This gives tpd ∼= 1.2 eV. The p−d excitation energies are
determined from a LMTO-bandstructure calculation [15],
which yields ∆εy ∼= 4 eV and ∆εx ∼= 6.5 eV, respectively.
Hence ta ∼= 0.35 eV, while the corresponding matrixele-
ment tb ∼= 0.15 eV is considerably smaller because of the
larger oxygen-vanadium distance and the larger ∆εx. We
note that the larger value for ta is consistent with the
stronger bonding of the V 1−O3−V 2 bond.

The Hamiltonian for the dxy-electrons may be written

in terms of creation and density operators d†iασ and niασ =

d†iασdiασ, respectively, in the form

Hd = −
∑
iσ

ta(d†i1σdi2σ +H.c.) + Ud
∑
iα

niα↑niα↓

−
∑
〈ij〉αβσ

tαβi j (d†iασdjβσ +H.c.), (1)

where we have introduced a cell structure. Here a cell con-
tains two vanadium atoms V 1 and V 2, i.e. α = 1 and
2, and is labeled by a cell index i = (ia, ib). The cell-
Hamiltonian consists of a kinetic energy term ta and the
local interaction Ud ∼= 4 eV [17]. In Hd we droped a shift
of the single particle levels which is only relevant for total
energy considerations [18]. The hopping between cells is
defined by the last term, where

tαβi j =

{
tb for α = β, ja = ia, jb = ib ± 1
txy for α 6= β, ja = ia ± 1, jb = ib ±

1
2

· (2)
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Fig. 2. Geometric structure of the effective spin model. A
site corresponds to a V 1−O3−V 2 cell with a single d-electron.
Dark symbols indicate the part of the structure shown in Fig-
ure 1. The largest antiferromagnetic interaction is Jb, while
the frustrated interaction Ja between neighboring b-chains is
small. The one-dimensional magnetic structure is further en-
hanced by the topology of the lattice. The antiferromagnetic
interaction Ja of spin 3 with spins 1 and 2 on the neighbor
chain is frustrated.

Since the ratios between Ud and the various hopping ma-
trix elements are quite large, we are confronted with a
strong correlation problem.

In the following we shall use a cell-perturbation
method [19] based on the above cell structure, where each
V 1−V 2 cell contains in the average a single d-electron.
The advantage of the cell decomposition is the capability
to treat the local correlations exactly. The complete set of
states is then labeled by the quantum numbers of the cells,
i.e. including the number of electrons within a cell. In the
one electron sector the cell states are simply bonding and
antibonding states at energies ± ta and corresponding op-

erators b†iσ (a†iσ) = 1√
2
(d†i1σ ± d

†
i1σ), respectively. The low

energy configurations b†iσb
†
jσ′ of two electrons in neighbor

cells i and j are coupled in second order due to the hopping
tij. The intermediate states have two electrons in one cell.
The low-energy singlet and triplet states have excitation
energies∆Es = 2ta−

1
2 (
√
U2
d + 16t2a−Ud) and ∆Et = 2ta,

respectively. Other singlet states are at much higher en-
ergy E ≥ Ud + 2ta. The Heitler-London singlet-triplet
splitting of the low-energy intermediate states turns out
to be crucial for the anisotropic nature of the magnetic
properties.

The coupling of the b†iσb
†
jσ′ configurations may be ex-

pressed in compact form by the spin-1/2 Hamiltonian

H =
∑
〈ij〉

[
Jsij
(
SiSj −

1

4
ninj

)
− J tij

(
SiSj +

3

4
ninj

)]
, (3)

where Si = 1
2b
†
i,στσσ′bi,σ′ defines the spin of bonding elec-

trons in terms of the vector of Pauli spin matrices τ and

ni =
∑
σ b
†
i,σbi,σ their density. Here Jsij and J tij denote the

coupling of neighboring cells in the singlet- and triplet
channel, respectively. The relative size of the exchange in-
tegrals is strongly influenced by the geometrical structure
(Figs. 1 and 2). The coupling of cells in a-direction, i.e. via
txy, yields Jsa = 2(txy/2)2/∆Es and J ta = 2(txy/2)2/∆Et.
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Fig. 3. AF-exchange coupling between d-electrons in nearest
neighbor V 1−O3−V 2 bonds as function of tpd: (a) Jb along
b-direction (solid line), (b) the small coupling Ja = Jsa − J

t
a

between different b-chains mediated by txy ∼ 0.3 eV results
from the cancellation of the contributions Jsa and Jta from
the Heitler-London split singlet and triplet intermediate states
(dashed lines).

They differ only because of the singlet-triplet splitting
Es−t = 1

2 (
√
U2
d + 16t2a − Ud). The coupling of cells in b-

direction is Jsb = 2t2b/∆Es and J tb = 0, where the latter
exchange integral vanishes due to symmetry. This has the
effect that the total exchange constants in H =

∑
JijSiSj

almost cancel along a-direction, i.e. Ja = Jsa−J
t
a, whereas

along the ‘b-chains’ Jb = Jsb there is no such reduction.

These estimates are valid if the ratios 2ta
U

and t′

2ta
, with

t′ = {tb, txy/2}, are small compared to 1. Numerical es-
timates for these exchange integrals based on degenerate
perturbation theory are shown in Figure 3 as function of
the vanadium-oxygen (V 1−O3) hybridization tpd. For the
estimated value tpd ' 1.2 eV one finds Jb ' 75 meV and
Ja ' 13 meV.

Experimental estimates for the exchange constants are
usually obtained from the position of the maximum of
the uniform susceptibility χ(T ). In the following we study
the effect of the interchain coupling Ja and the thereby
introduced frustration of the spin-1/2 model (3) using
a finite temperature diagonalization technique [20]. The
geometrical structure of the lattice (Fig. 2) is similar to
the resonating valence bond systems studied by Anderson
and Fazekas [21]. Results for a two-leg ladder (‘railroad-
trestle’) with periodic boundary conditions along a- and b-
direction and different interchain coupling strength Ja/Jb
are shown in Figures 4 and 5. Since the interchain coupling
is frustrated the change of χ(T ) is relatively small. The
maximum of χ(T ) is at the temperature Tmaxχ = aχJb,
where aχ = 0.8 for a 2 × 12 system in the absence of
the interchain coupling, i.e. Ja/Jb = 0. The exact result
for the thermodynamic limit recently obtained by Eggert
et al. [22] using the thermal Bethe ansatz is aχ = 0.6.
Interchain coupling leads to a small shift of the maxi-
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Fig. 4. Uniform susceptibility χ(T ) (in units of 1/Jb) for a
two-leg ladder (2×12) with the structure given in Figure 2 for
different interchain coupling strength Ja/Jb = 0, 0.2 and 0.4
and periodic boundary conditions.
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Fig. 5. Uniform susceptibility χ(T ) for a 2×12 two-leg ladder
for different interchain coupling strength Ja/Jb = 0, 0.2, 0.4
and 1.0 on a large temperature scale. The rapid drop below
T/Jb ≤ 0.2 is a finite size effect.

mum by about 2% to lower temperatures for the value
Ja/Jb ∼ 0.2 estimated above (Fig. 4).

We note that lattice fluctuations are expected to lead
to a further weakening of antiferromagnetism and an ad-
ditional shift of the maximum of χ(T ) to lower T . A re-
cent study of this effect by Sandvik et al. [23] shows that
this may lead to a reduction of Tmaxχ by 15% for a one-
dimensional Heisenberg chain. Combining these two ef-
fects one arrives at the estimate atotχ ∼ 0.50. From the
susceptibility measurements [4,11] for α′-NaV2O5 one
finds Tmaxχ ∼ 350 K, which leads to the estimate Jexpb ∼
700 K. This is in reasonable agreement with the theoret-
ical value Jb ∼ 75 meV derived in this work. In view of
the simplicity of the model and the rough estimates of the
parameters this is quite satisfactory.
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We briefly comment on the band picture, i.e. ig-
noring the effect of electron correlations. Since double-
exchange is not contained in this scheme, the only large
hopping matrix element is txy. This leads to two degen-
erate one-dimensional dxy-bands from the zig-zag chains
V 2−V 1′−V 2−V 1′ and V 2′−V 1−V 2′−V 1 (Fig. 1), re-
spectively, since there are two zig-zag b-chains per unit
cell. Each band is quarter-filled and one may expect a
usual Peierls transition to occur due to an appropriate
modulation of the structure in b-direction. Although this
could explain the insulating properties at room tempera-
ture, such an explanation is obviously incorrect, since it
would rule out a spin-Peierls transition at low tempera-
ture. Of course the large ratio Ud/txy already excludes the
straightforward application of the band picture. Neverthe-
less for sufficiently large txy one expects that the corre-
lated band picture applies. Estimates of the ground state
energies for the localized regime and the band picture sug-
gest that this is the case for txy > 1.5ta.

The bands obtained by a real bandstructure calcu-
lation deviate from this idealistic picture due to small
interchain couplings, which is also reflected in shorter
V 1−O3−V 2 bonds [15]. The full bandstructure calcula-
tion predicts a metallic state.

We remark that photoemission experiments in com-
bination with XAS would provide a sensitive test of the
present picture, since the lowest unoccupied states are the
singlet and triplet states, while higher lying ‘two-particle’
states are split by Ud. Optical conductivity measurements
on the other hand should show a relatively small ‘single
particle’ gap Eg ∼= 2ta.

In summary we have shown that α′-NaV2O5 is an in-
sulator due to strong correlations, i.e. large Ud. However
since the single electron orbitals have bonding character,
i.e. involving two V-atoms, the magnetic structure is in-
duced via 2-electron molecular singlet and triplet states
which are Heitler-London split. Due to the almost perfect
cancellation of the triplet- and singlet-interactions in a-
direction the spin system is essentially one-dimensional.
We stress that doubly occupied states with energy ∼ Ud,
which usually contribute to the magnetic interaction in
Mott-Hubbard insulators, have little influence since they
are at much higher energy. Therefore we propose the name
Heitler-London insulator as a more precise characteriza-
tion for such systems.

Note added in proofs

Recent optical measurements by Golubchnik et al. [24]
show a pronounced polarization dependence and an opti-
cal gap Eg ∼ 0.6−0.7 eV consistent with our results. The
next higher excitation band with onset at ω ∼ 3.5 eV
falls in the range of the p−d interband transitions. A sim-
ilar conclusion about the structure of α’-NaV2O5 as in
reference [13] was obtained independently by Smolinski
et al. [25]. Their theoretical interpretation of NaV2O5 as a
quarter-filled ladder compound is, however, largely based
on very small inter-ladder hopping matrix elements t1 and

t2, which distinguishes their analysis from the one pre-
sented here.

We acknowledge stimulating discussions with J. van den Brink,
Yu. Grin, A. M. Oles and H.-G. von Schnering.
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